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Abstract

We describe the design of a censorship-resistant system that employs a unique document
storage mechanism. Newly published documents are dependent on the blocks of previously
published documents. We call this dependency an entanglement. Entanglement makes repli-
cation of previously published content an intrinsic part of the publication process. Groups
of files, called collections, can be published together and named in a host-independent man-
ner. Individual documents within a collection can be securely updated in such a way that future
readers of the collection see and tamper-check the updates. The system employs a self-policing
network of servers designed to eject non-compliant servers and prevent them from doing more
harm than good.

1 Introduction

This paper makes the case for censorship-resistant publishing through document entanglement.
The Internet is widely regarded as difficult to censor. Indeed, in a handful of well-known cases,
such as the attempt to suppress DVD decoding software, the material being censored instead be-
came widely replicated and more highly available. In addition, those responsible for publishing the
software received free legal representation from non-profit organizations. However, DVD view-
ing is a particularly popular cause. In contrast, censorship-resistance is most important for those
expressing unpopular views. In less high-profile cases, people often enjoy far less support for
exposing corruption or criticizing schools, employers, and particularly litigious organizations.
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In many cases, censoring documents on the Internet is fairly straight-forward. Almost any
web page can be traced back to a specific server, and from there to an individual responsible
for the material. Someone wishing to censor a web page can use the courts, threats, or other
means of intimidation to compel the server administrator to remove the contents or reveal the
author’s identity. Even if these methods prove unsuccessful, various denial of service attacks can
be launched against the server to make the page difficult or impossible to retrieve. Unless a web
site’s operator has a strong interest in preserving a particular web page, removing it is often the
easiest course of action.

Several properties can make a publishing system far more difficult to censor than the web. First,
to thwart censorship, documents should not be associated with any particular server. Data should
periodically migrate from server to server, and multiple servers should store copies of a document
and share responsibility for serving its contents.

In addition to diffusing the responsibility for serving documents, a censorship-resistant system
should allow the source of a document to remain anonymous, so as to avoid real-world intimida-
tion of the author. Unfortunately, attackers can themselves exploit anonymity in mounting attacks.
For example, an attacker may attempt to exceed the capacity of a publishing system by anony-
mously publishing huge numbers of documents. Alternatively, the attacker may attempt to replace
published documents with censored versions, preventing readers from obtaining the original.

Several past projects have explored censorship-resistant systems, with designs ranging from
true peer-to-peer systems with thousands of nodes constantly coming and going to single servers
that simply cannot delete one document without inflicting intolerable damage on others. In this
paper, we propose a system called Tangler with a design that lies somewhere between current
anonymous remailer networks and the Usenet news hierarchy.

As with anonymous remailers, we envision 10–30 Tangler servers, operated by volunteers
around the world, with a general consensus of which servers are currently operational. Over time,
servers will leave and new ones will appear. New servers, even if malicious, cannot seriously
damage the system, leaving little incentive to exclude any volunteers. As with Usenet, servers
have large storage capacities and good network connectivity, and each server stores an important
fraction of the content of the entire system.

One of the key properties of Tangler is the lack of a one-to-one mapping from the stored blocks
to published files. Rather, a stored block can be used to reconstruct several different files. Newly
published documents are broken into blocks that must be combined with previously published
blocks. The newly published documents are dependent on the previously published blocks. We call
this dependency an entanglement. Entanglements not only break the one-to-one correspondence
between blocks and files, but also provide a publisher with some incentive to replicate and store
the blocks of other documents. Thus, replication becomes a fundamental part of publishing.

We have implemented entanglement, and believe the technique would apply to many existing
censorship-resistant publishing projects. This paper also gives the design of a Tangler block storage
network intended to accentuate the benefits of entanglements. The Tangler network resists many
potential attacks to which anonymous publishing systems can fall prey and additionally makes
auditing servers’ behavior a fundamental part of publishing.
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2 Censorship Resistance and Design Goals

The main goal of a censorship-resistant system is to keep published documents available in the
face of attempts to censor them. Therefore a censorship-resistant system is in large part shaped by
the threats it faces.

In this section we examine the types of threats that a publishing system may face and briefly
describe ways to cope with these threats. At the end of this section we list the design goals of our
censorship-resistant system called Tangler.

2.1 Attacks on Storage

A censorship-resistant system must replicate published documents. A sole replica presents a single
point of failure that can be exploited by an adversary or, for example, made unavailable by an act
of nature.

In order to achieve a high degree of replication many censorship-resistant systems rely on
volunteers to donate disk space. This donated disk space allows the censorship-resistant system to
be used like a distributed file store. However, even with a large number of participating servers,
a publishing system only has a finite capacity. Once this storage has been filled, new documents
cannot be published until old documents expire or are deleted. By filling the system with random
files, an attacker can exhaust available disk space and therefore make the system unusable to other
publishers.

This sort of block flooding attack is a form of denial of service, as it prevents future publishers
from using the system. The usual way of combating this type of attack is to charge the publisher for
disk space. This charge can take the form of anonymous e-cash or a CPU-based payment system
that forces the publisher to perform some sort of work—possibly even of use to the censorship-
resistant system.

2.2 Document Deletion

The most obvious way to censor a published document is to delete it from all hosting servers.
An attack with the same end result is to simply force the hosting servers off the network so that
potential readers cannot contact the servers.

An adversary can use threats or the legal system to force individual server administrators to
delete certain documents. In addition, the adversary can attempt to remove the servers from the
network by threatening the server’s network provider. These attacks clearly show how the power of
the adversary can affect the censorship resistance properties of a system. While a single individual
or company might not be able to successfully remove a document from all participating servers, a
government certainly might possess such power.

The main way of dealing with these types of attacks is to highly replicate the published doc-
uments. Ideally, the replicated documents would be stored on servers in many different countries
and judicial domains. This clearly makes these sorts of adversarial attacks harder to execute suc-
cessfully.
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2.3 Document Tampering

A less obvious form of censorship is the modification of previously published documents. If an
adversary can arbitrarily change the content of a document then he has succeeded in censoring
it. This form of censorship is especially easy for server volunteers to perform. Each server vol-
unteer completely controls the disk space that he has donated to the censorship-resistant service.
Therefore he can arbitrarily modify any of the stored files.

The most effective way of combating this form of censorship is to provide a tamper-check
mechanism for retrieved documents. This is usually done by embedding a cryptographic hash of
the published document in its name. Thus, anyone who possess the document’s name can verify
the integrity of a copy retrieved from a server.

2.4 Rubber-Hose Cryptanalysis

Some censorship-resistant systems allow publishers to update or delete previously published con-
tent. These features make the system more usable as opposed to censorship-resistant. A system that
supports document updates allows the publisher to change the published document and republish
it in such a way that a reader will always view the latest version of the document.

The delete operation allows publishers to delete content that has been accidentally published or
is simply no longer relevant. However, both of the update and delete operation can be exploited by
an adversary. If an adversary finds the individual responsible for publishing a particular document,
the adversary can use threats, torture, blackmail, etc. to force the publisher to delete or update the
offending document.

Many censorship-resistant systems provide some sort of anonymity service that allows an indi-
vidual to publish anonymously. However, the degree of anonymity usually depends on the adver-
sarial model. For example, most anonymizing systems assume that an adversary can only control
a certain number of servers or that he can view only a portion of the network traffic.

2.5 Goals

Below we list the design goals that were important in shaping Tangler.
Dynamic Server Participation. New servers should be allowed to join and participating

servers allowed to leave. This means that possible adversaries could join the system and attempt
to corrupt other servers, learn the identity of a publisher or try to subvert the rules of the system.

Previous Document Replication. The replication of previously published material should be
an integral part of the publication process. This increases the number of replicas of previously
published documents and therefore makes the censor’s work a bit harder.

Publisher and Reader Anonymity. The system should provide a degree of anonymity to both
document readers and publishers.

Secure Update. A publisher can securely update previously published material.
Publisher caching incentive. The publisher of a document has some incentive to cache the

blocks belonging to previously published documents. This leads to greater replication.
Publishing limit. A publisher can publish no more than a certain fraction of what he is willing

to store. This is intended to limit the damage done by a malicious publishers trying to fill up all
available space—a denial of service attack.
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Location-independent naming. The name of a document should not be tied to a specific
network address. This helps prevent adversarial attacks against specific network locations that are
holding the published material. It also allows published material to be relocated.

Self-policing. As long as a majority of the participating servers are honest, misbehaving nodes
can be identified and temporarily ejected from the system. The reason for the “temporarily” quali-
fier is that misbehaving nodes can always reappear under a new name (IP address and public key),
and can therefore rejoin the system.

All servers perform useful work. Before being allowed to join the system a server must
perform some useful work for the system. This work may include redundantly storing or indexing
documents. This ensures that a server bent on adversarial behavior performs useful work before
being allotted full access to the system.

Document links. Similar to the world wide web’s hyperlinks there should be a method of
linking to previously published documents. These links should point to the latest version of the
particular document and contain an embedded tamper-check mechanism. This mechanism is used
to tamper-check the retrieved document.

3 Related Work

In this section we briefly describe the relevant characteristics of other censorship-resistant sys-
tems. In addition, we describe some peer-to-peer systems that were not designed to be censorship-
resistant but could conceivably be used as building blocks for such a system.

3.1 Censorship-Resistant Systems

Current censorship-resistant publishing systems use a variety of techniques for document distri-
bution and storage. Roughly speaking, current systems distribute documents in one of two ways.
The first is to redundantly store the document on a large collection of servers participating in the
publishing system. One of the advantages of this approach is that only one server needs to be avail-
able in order to successfully retrieve the document. Systems that fit into this category are Freenet
[4] and Publius [21]. In Freenet, documents are named by the cryptographic hash of the title or
description of the document (e.g. the hash of the phrase “The Declaration of Independence”). In
Publius, documents are encrypted and named by a special URL that specifies the various hosts
that are storing the document. In addition, possession of the URL allows one to perform a tamper
check on the retrieved document. Publius redundantly splits the document’s decryption key and
stores the pieces on various servers. Therefore, at least some of the servers that hold a piece of the
decryption key must be available in order to read a Publius document.

The second category, into which Tangler falls, consists of systems that break the published
document into a number of smaller blocks. Each of these blocks is treated independently and
stored on a subset of the participating servers. In order to reconstruct the document, requests
for the component blocks are sent to a subset of participating servers. The servers that possess
these blocks send them back to the requester. Frequently the component blocks are redundantly
stored such that a document can be reconstructed even if a portion of the participating servers
are unavailable. Systems that fall into this category are Free Haven [6], Intermemory [9] and
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Mojonation [12]. For each published document a structure similar to an inode needs to be created
to store the name or address of the document’s component blocks. Systems in both categories
may encrypt or otherwise obscure the contents of the document so that the servers cannot readily
identify the content they are hosting and therefore have less of an incentive to censor it.

In each of these block based systems, an individual file block belongs to exactly one document.
This usually means that a server administrator has no plausible excuse for retaining a particular file
block when he is being pressured or threatened to delete it. The document inode itself becomes a
very attractive adversarial target as the document cannot be retrieved without it.

Stubblefield and Wallach in [20] describe a publication method that is somewhat similar to
our entanglement. They use the term “intertwine” to describe the XORing of newly published
documents with those of previously published documents. Newly published documents are “inter-
twined” with previously published ones. However, in order to read a published document one must
retrieve all of the documents that were intertwined with it. This is not the case with entanglements.

Some of the previously mentioned censorship-resistant systems suffer from a flat name space
which can lead to to file name collisions and so-called “name squatting.” In this context, “name
squatting” refers to the adversarial practice of publishing an empty or meaningless file with a
specific file name in order to prevent others from using that same name.

An issue somewhat related to naming is that of pseudonymous publishing. A pseudonymous
publishing system allows groups of documents to be be linked to one publisher while the publisher
himself may remain anonymous. This allows the publisher to gain some sort of reputation over
time and to update previously published documents.

Many of the previously mentioned systems are still in their infancy—either existing in design
only or deployed in a testbed fashion. Therefore it is difficult to judge the scalability of these
systems. Most of these systems exhibit scalability tradeoffs. Freenet, for example, allows servers to
join and leave at will, however the new servers may not immediately be able to locate all published
content.

3.2 Peer-to-Peer Systems

In true peer-to-peer systems, there is no distinction between a server and client. Therefore we will
identify computers participating in a peer-to-peer system as nodes. While Tangler assumes that all
severs know of each other, most peer-to-peer systems are designed to scale to the point that not
every node knows about all other nodes.

Gnutella [8] is a file sharing application that allows participating nodes to query for and copy
files stored on other participating nodes. There is no formal publication method. A node simply
interprets queries in any way it sees fit and sends back the names of files that is feels matches the
query. As each request is essentially broadcast to other participating nodes the communication
costs are quite high. While anonymous searching is supported, all file transfers are done in a point
to point fashion and are therefore not anonymous. A node that wants a copy of a file directly
contacts the node holding that file and performs the transfer. Tangler’s block lookup protocol
is more efficient than Gnutella’s flood queries in the expected number of servers that must be
contacted. However, joining and leaving the server network is far more heavy-weight and less
scalable in Tangler than in Gnutella.

CFS [5] is a peer-to-peer file storage service. CFS utilizes a unique routing algorithm called
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Figure 1: Collections can be made up of files (hard links) and links to other collections (soft links)

Chord that not only allows nodes to join or leave at will but also greatly reduces the communication
costs associated with finding nodes that hold the needed file. Tangler and Chord both employ
consistent hashing to route queries. Chord is designed to support far more nodes than Tangler,
however. Chord nodes only need to know about O(log(N)) other nodes, making joining and
leaving the system very efficient. Chord queries contact O(log(N)) servers. In Tangler, queries
only contact a constant number of servers, but every server must know about every other server.
Unlike Chord, Tangler actively migrates data between servers so that, over time, different servers
will be responsible for any given data block.

PASTRY [17], CAN [15] and Tapestry [22] are all peer-to-peer routing algorithms with goals
similar to Chord that have low communication overhead and yet still scale to a very large number
of participating nodes.

4 Tangler document collections

The Tangler system consists of a publishing program that transforms documents into blocks, a
reconstruction program that fetches blocks to reconstitute documents, and a network server daemon
that permits the distribution and retrieval of blocks in a collection of servers. This section explains
Tangler’s approach to document naming and content authentication, and describes how Tangler
transforms published content into fixed-size blocks suitable for injection into a storage network.
These fixed-size blocks are constructed so that they can potentially belong to multiple documents,
the property we call entanglement. Section 5 describes the algorithm used to entangle blocks.
Though Tangler does not currently have an implemented network daemon, Section 6 proposes the
design of a self-policing block server network that can survive certain flooding attacks and the
existence of corrupt servers.
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4.1 Collections

Every document in Tangler is published as part of one or more collections. A collection is a group
of documents that are published by the same person under the same public key. Collections are
published anonymously, but the person who published a collection can update it. Thus, anonymous
collections may build reputations. A collection can consist of a single document, multiple versions
of a single document, multiple documents, or soft links to documents in other collections. One can
think of a collection as a directory containing a group of related files, subdirectories, and links. For
example, a collection may contain a group of technical reports, the files making up a web site, or
an index of other collections.

Each collection is named by a public key, K. Tangler refers to documents in a collection as K/

name, where name represents the name chosen by the publisher for the document. For example,
lets assume we wish to publish a collection consisting of the files that make up the screenplay for
a movie entitled “Last Tangle In Paris.” The parameters to the publish program are the collection
members (files, directories, and soft links), and a public/private key pair. The publish program
entangles the collection members. The public key is used to name the collection. The private key
is used to sign the collection.

The reconstruction program retrives documents and places them in subdirectories of a Tangler
root directory, named by public key. For example, suppose the Tangler root is /tangler. The
reconstruction program, when asked, might place act1 in /tangler/75b4e39a1b58c265f72dac

35e7f940c6f093cb80/act1, where “75b4e39a1b58c265f72dac35e7f940c6f093cb80” is the
collection’s public key.

As previously stated, collections consist both of documents and links to documents in other
collections. Links to documents in other collections are referred to as soft links. When a collection
is updated, soft links into that collection reflect the new contents.

The reconstruction program represents soft links as symbolic links in the file system. Docu-
ments within a particular collection are known as hard links. Two collections may actually contain
hard links to the same document and share the same entangled blocks for reconstituting the docu-
ment. However, if one collection is updated by linking the same name to new contents, the other
collection will not reflect the change. Hard links are useful to preserve a document if one fears the
collection it was published in may change or disappear.

As an example, the “Last Tangle In Paris” screenplay collection contains a hard link to the file
act1. However, it might also contain a soft link to a collection published by the Paris Tourist Bu-
reau entitled 3f9· · ·2d1/current events.html (where 3f9· · ·2d1 is the Tourist Bureau’s public
key). The Paris Tourist Bureau actually owns the collection and can therefore update it. Our col-
lection merely points to it. Anyone reading the screenplay collection soft link will read the latest
Paris Tourist Bureau collection. See Figure 1.

4.2 Hash trees

Tangler makes extensive use of the SHA-1 [14] cryptographic hash function. SHA-1 is a collision-
resistant hash function that produces a 20-byte output from an arbitrary-length input. Finding any
two inputs of SHA-1 that produce the same output is believed to be computationally intractable.
Thus, we can assume no collisions and treat SHA-1 hashes as unique, verifiable identifiers for data
blocks.
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Tangler also relies on Hash Trees [11]. Hash trees allow one to to specify or commit to large
amounts of data with a single cryptographic hash value. Using hash trees, users can efficiently
verify small regions of the data without needing access to all of it. In a hash tree, the data being
certified or committed to fills the leaves of an n-ary tree. Each internal node of the tree stores the
cryptographic hashes of the child nodes. Assuming no hash collisions, then, the hash value of the
tree’s root specifies the entire contents of the tree. One can prove the integrity of any leaf of the
hash tree to someone who knows the root by producing the values of intermediary nodes from the
root to the leaf.

The SFS read-only file system [7] showed how to transform a file system into a hash tree.
SFSRO clients can traverse a file system and verify the contents of individual file blocks starting
only from a root hash. Tangler employs a similar technique to produce collections, but the specifics
differ somewhat because of entanglements.

4.3 Server Blocks

In order to publish a collection, C, one runs a publisher program that takes as input a public/private
key, and a directory of files. The program fetches random previously published blocks and entan-
gles these blocks with the files in C to produce new blocks. (Section 6 describes how such random
fetching can be implemented.) Finally, it signs a collection root structure. Thus, one must have
C’s private key to publish or update the collection. Once entangled, C depends inextricably on
the randomly chosen, previously published blocks for the reconstruction of its files. The person
publishing C must distribute both the blocks just created and the ones with which her collection is
entangled. Thus, replicating others’ documents is an inherent part of publishing.

The entangled output blocks of the publisher program are suitable for injection into a storage
network. We call these blocks server blocks to differentiate them from the file data blocks that
were input to the publisher program. Tangler names server blocks by their SHA-1 hash values. It
records SHA-1 values in collection metadata structures and assumes blocks can be retrieved from
the storage network by their hash values.

Each collection has a root. This root functions much as a root directory in a file system—it
defines a starting point in the search for files. The one exception to the SHA-1 hash addressing
scheme is the addressing of the collection root. Recall that a collection is signed and named by
a public key. This public key therefore also names the collection’s root block, and therefore must
be present within that block. Thus, the storage network must support the retrieval of blocks by
public key. As a collection can be updated, two or more collection roots with the same public key
may appear in the storage network. To disambiguate the blocks, a version field is present within
all collection roots. The version field is incremented each time a collection is republished.

For the rest of this section and Section 5, we assume a collection of storage servers that imple-
ment a distributed, public block pool. Participating servers can inject server blocks into this pool,
and blocks can be retrieved by SHA-1 hash or public key. Section 6 discusses how to implement a
storage network far less susceptible to attack and abuse than a simple block pool.
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Proc Publish (Collection C, PublicKey pk, PrivateKey sk)
c=new CollectionRoot()
for each file, f , in the post-order traversal of C:

i=new Inode(f)
for each data block, b, in f :

p1=random server block selected from pool
p2=random server block selected from pool
(e1, e2)=entangle(b,p1,p2)
store server blocks (p1, p2, e1, e2) in pool
r=random permutation(p1, p2, e1, e2)
record b’s dependency on (r) in i

endfor
/∗ entangle the inode ∗/
p3=random server block selected from pool
p4=random server block selected from pool
(e3, e4)=entangle(i,p3,p4)
r=random permutation(p3,p4,e3,e4)
/∗ r stores the reconstruction address for inode i ∗/
record (f, r) in collection root

endfor
c.name=pk
c.version=1
digest=SHA 1(name, version)
c.sig=sign(digest,sk)

End Publish

Figure 2: Publish Algorithm

4.4 Publisher Program

The first step of the publisher program is to entangle each member file in a collection. Each file
is split into fixed-size (16K) data blocks. The last data block may need to be padded to achieve
the fixed size. Each data block is then entangled using the algorithm described in Section 5.2.
The entanglement algorithm takes as input two random blocks from the block pool and one data
block from a file being published. It outputs two new server blocks, which when combined with
the randomly selected pool blocks can reconstitute the data block. Thus, for every data block a
publisher entangles, she becomes interested in ensuring the availability of four server blocks in the
public pool. A data block can actually be reconstructed from any three of its four associated server
blocks, adding some fault-tolerance (see Section 5.3). Notice that we do not inject data blocks in
the storage network, only server blocks.

Every entangled file has an associated inode data structure that records the SHA-1 hashes of the
server blocks needed to reconstruct the file’s data blocks. Once all the data blocks of a particular file
have been entangled and the names of the associated server blocks recorded in an inode, the inode
itself is entangled. This entanglement produces the names of four server blocks that can be used to
reconstruct the inode. These four server block names are recorded, along with the associated file’s
name in the collection root. The collection root essentially provides a mapping between file names
and inodes. The inodes, in turn, provide the information necessary to reconstruct the associated
file. Collection roots also record the collection’s soft links. Figure 2 shows the pseudocode for the
publish algorithm.
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A digitally signed collection root is padded to the same size as a server block, and also gets
indexed by SHA-1 hash. Roots can therefore become entangled just as other server blocks. Soft
links not only contain a target collection’s public key, but also the target’s version number at the
time of publication, and its root block’s hash. The version number ensures that a soft link will never
be interpreted to point to an older version of the collection than the one visible to the publisher. The
addition of the root block hashes ensure that the collection root can be reconstructed if it cannot be
found, in the block pool, via public key lookup.

4.5 Retrieval

The storage network implementing the public block pool must allow anonymous queries. Users
reconstructing documents need to retrieve a specific block by hash value without revealing their
identity. Server blocks retrieved from the public block pool are tamper-checked by simply com-
puting the SHA-1 hash of the block’s contents and comparing it to the SHA-1 hash by which the
block was named. Similarly, the signatures on collection roots must be verified.

Once in possession of a verified collection root, a server can attempt to reconstruct any of the
files stored in (or named by) the collection. As you will recall, that the name of the server blocks
needed to reconstruct a file’s inode are listed in the collection root. The file’s inode contains the
names of all of the server blocks needed to reconstruct the file. Only a portion of the blocks listed
in the inode will be needed. For example, an entangled data block requires only three of the four
server blocks recorded for it in the inode. Once the necessary server blocks are retrieved, the
reconstruction algorithm (Section 5.3) is applied to the blocks.

4.6 Update

In order to update a collection one simply republishes it using the same public/private key pair that
was used to originally publish the collection, but a higher version number (for instance the date is
an adequate version number). Files that have not changed since the previous version of a collection
do not need to be reentangled. If the public pool contains two or more collection roots possessing
the same public key, the lookup algorithm must return the root with the latest version number.

5 Entanglement

In this section we detail the block entanglement and reconstruction algorithms. As the entan-
glement process relies on Shamir’s secret sharing algorithm, we begin by briefly describing that
algorithm.

5.1 Secret Sharing

Shamir [18] described a method of dividing up a secret, s, into n pieces such that only k ≤ n
of them are necessary to later re-form the secret. Any combination of less than k pieces reveals
nothing about the secret. The pieces are called shares or shadows and the secret, s, is represented
as an element in a finite field.
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To form a set of n shares one first constructs a polynomial of degree k − 1 such that s is the
y intercept of the polynomial. The coefficients of the polynomial are randomly chosen. So, for
example, if our secret was the element 6 ∈ Z11 and k equals 3 then an appropriate polynomial
would be y(x) = 7x2 + 4x + 6. To form the n shares we evaluate this polynomial n times using n
different values of x. Each (x, y) pair formed from the evaluation of the polynomial forms a share.
Of course, the x value of a share must never be 0 as that share would reveal the secret.

Performing interpolation on any of the k shares allows us to re-form the polynomial. This
polynomial can then be evaluated at 0, revealing the secret. Combining fewer than k shares, in this
manner, gives no hint as to the true value of the secret.

5.2 Entanglement

In our discussion of secret sharing we stated that each share consisted of an (x, y) pair. In our
entanglement system the server blocks play the role of the shares.

As you will recall, a file to be published is divided into fixed sized data blocks. The last data
block may need to be padded to achieve the fixed size. We view each of these data blocks as a
y value. Since each share consists of an (x, y) pair we assign an x value of zero to each of the
data blocks. With this addition the data block becomes a server block. Call the first such server
block f1. We now randomly select b server blocks from the block pool. Each of these pool blocks
consists of an (x, y) pair. We then perform Lagrange interpolation on the b pool blocks and f1.
This forms a polynomial, p, of degree b. We can now evaluate p at different nonzero integers to
obtain new server blocks. Each new server block is of the form (x, p(x)). We then store these new
server blocks in the block pool. One could conceivably store f1 in the block pool as well, however
in a censorship resistant system one would usually not store this block as it consists of plaintext
and therefore is an easy target of the censor. The server blocks, being shares, give no hint as to the
content they have been entangled with.

This procedure must be done for every server block of the file to be published. A data structure
similar to that of an inode is necessary to record which server blocks are needed to re-form the
original data blocks and therefore the published file. The Tangler publish algorithm entangles the
inode as well.

5.3 Reconstruction Algorithm

In order to reconstruct a data block of a file we need to retrieve at least k of the appropriate shares.
Any k of the n shares will do. Lagrange interpolation is performed on these shares producing
polynomial p. Evaluation of this polynomial at zero produces the server block corresponding to
our original data block. By simply stripping away the x value we are left with the original data
block. This is repeated for every data block of the file we wish to reconstruct.

5.4 Implementation Issues

We have implemented the entanglement based publish and reconstruction algorithm in Java. The
implementation shows that entanglement does not impose a large performance penalty as several
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optimizations are used to speed up what might otherwise be considered a somewhat costly compu-
tation. Our publish algorithm takes as input the files to be entangled. Each file is divided into fixed
sized data blocks. Each data block is converted into a server block with x = 0 and then entangled
with two random server blocks. The polynomial formed from the entanglement is evaluated twice
to produce two additional server blocks. Essentially our publish algorithm defines a secret sharing
scheme with n = 4 and k = 3, with the added feature that two of the four shares are also shares
of other blocks. The newly created server blocks are written to the block pool, however we do not
use these blocks in future entanglements of the same file.

In our implementation each file to be published is divided into data blocks of size 16K. There-
fore each server block consists of an x value and a 16K y value. Instead of simply performing
interpolation on a large (16K) y value we treat each server block as a collection of (x, y) pairs.
Each pair has the same x value. The y value is 2 bytes long which means that each server block
consists of a single x value and (1024 ∗ 16)/2 = 8192 y values. Interpolation is performed on
corresponding (x, y) pairs of each server block. For example, the third (x, y) pair of each server
block is interpolated and evaluated to form the third (x, y) pair of one of the new server blocks
formed during the publication process. This process is further described in the analysis section
below. All interpolation is done over the finite field GF (216).

Our current java implementation can reconstruct files at a rate of 600 KB/sec. Publishing
incurs a fairly steep upfront cost because of block pool initialization and the use of the Java secure
random number generator, but the incremental cost of publishing data scales linearly. Publishing a
one megabyte file took 36 seconds, a two megabyte file took 41 seconds and a five megabyte file
took 53 seconds.

5.5 Analysis

In a very basic sense entanglement and reconstruction consist of a server block interpolation fol-
lowed by evaluation of the associated polynomial. In this section we look at the cost, in terms of
interpolation, of the entanglement and reconstruction scheme.

Given a 16K data block, d, we entangle it to produce 4 shares, any 3 of which determine d.
Two of these four shares come directly from the block pool. Data block d is first converted into
a server block. The x value of this server block is 0 and the 16K data block forms the 8192 y
values. We perform Lagrange interpolation on these three server blocks. Below is the Lagrange
interpolation formula [19] for the unique polynomial a(x) of degree at most t. The value t is three
in our scheme.

a(x) =
t

∑

j=1

yij

∏

1≤k≤t,k 6=j

x − xik

xij − xik

We must perform interpolation once for each (x, y) pair in the server block. This means that we
must perform interpolation (and an evaluation) 8192 times per block. However, this operation can
be heavily optimized as the x value remains the same. Below we show the computation necessary
for interpolating three (x, y) pairs. Let (x1, y1), (x2, y2) and (x3, y3) denote the three points to
be interpolated. Note (x1, y1) and (x2, y2) denote points in the two public pool server blocks and
(x3, y3) denotes the point from the data block d. All arithmetic is done over the finite field GF (216).

a(x) = y1

(

x − x2

x1 − x2

) (

x − x3

x1 − x3

)
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+ y2

(

x − x1

x2 − x1

) (

x − x3

x2 − x3

)

+ y3

(

x − x1

x3 − x1

) (

x − x2

x3 − x2

)

The entanglement procedure produces two new server blocks. Each new block is formed by
evaluating a(x) 8192 times with x assigned a random nonzero element from GF (216), generated
at the same time the server block was created. Notice that the x values do not change, only
the y values change. Therefore we only need to compute the fractional x terms once per server
block. Therefore our interpolation is now reduced to three multiplications and three additions—
certainly not prohibitive. As the computation is done over the finite field GF (216) the addition
and subtraction operations are the XOR operation. Multiplication and division consists of three
tabular lookups and one addition (for multiplication), or a subtraction (for division). All relatively
inexpensive operations.

The reconstruction algorithm also utilizes interpolation in exactly the same manner. In this
case the polynomial is evaluated once at zero. This evaluation reveals the secret (the data block).

5.5.1 Benefits

Entanglement has three beneficial consequences. The first is that it promotes the replication of
blocks of previously published documents (the blocks in the pool). A publisher could easily gen-
erate random, useless server blocks to entangle with, or else entangle exclusively with blocks of
his own previously published documents. However, neither of these alternatives is as beneficial as
using the blocks of documents published by others. If we assume that an individual who publishes
a document has a direct interest in caching and replicating it, then his actions are indirectly helping
all documents entangled with it.

The second consequence is that each server block now “belongs” to several documents—those
documents that have become entangled with the server block. This leads to the third consequence
of entanglement—incentive to store the server blocks published by others. If a set of entangled
blocks are necessary to reconstruct your own document then you have some incentive to retain and
replicate these blocks.

5.5.2 Limitations

We believe the entanglement process provides several benefits and can be profitably grafted onto
many censorship-resistant systems. However the system is not perfect. Below we outline some
potential limitations of the technique.

Any censorship-resistant system incorporating entanglements will need to build in some incen-
tive for an individual to entangle with unknown content. If all individuals only entangle with a few
popular documents (e.g. The Declaration of Independence) then the desired replication of other,
lesser known, documents will not take place.

Although the entanglement system does allow the reconstruction of a file from server blocks
produced by others, at least one server block that the publisher has generated is required. As you
will recall, b blocks are chosen from the block pool and are entangled with a data block from the
file to be published. Several new server blocks are then produced. At least one of these new server
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blocks is needed to perform the interpolation required during document reconstruction process. If
an adversary manages to delete all of these newly created server blocks then the original file cannot
be reformed, even if all the original pool blocks are available.

6 Tangler network

In this section, we propose a specific design for a Tangler network. The network is a collection of
block servers that accept queries either for SHA-1 hashes or public keys and return corresponding
blocks. The Tangler network protocol is intended to complement the benefits of entanglement.
Specifically, while entanglement makes replicating other people’s documents an inherent part of
publishing, the Tangler network protocol additionally makes auditing servers’ behavior inherent to
publishing. Thus, in the ordinary course of events, a well-behaved server will very likely obtain
irrefutable evidence of any malicious server’s bad behavior. The evidence can then be used to eject
the bad server from the system.

One of the important goals of the Tangler network is to let the system accept new servers
without fully trusting them. The network must therefore withstand misbehaving servers. Because
bad servers are quickly detected when they misbehave, the worst a bad Tangler server can do is
reduce the capacity of the system by whatever storage it is contributing. However, the protocol does
not let new servers consume storage during their first month of operation. Whatever capacity new
servers provide only increases replication. By the time a server can actually reduce the system’s
capacity, it must have been performing useful work for some time and thus will have contributed
more block-days of storage than it has consumed. Moreover, if, after being ejected, a malicious
server attempts to rejoin the system under a different identity, the server will actually reverse what
little damage it has inflicted by restoring lost capacity to the system.

The Tangler model assumes a collection of servers around the world, run by volunteers opposed
to censorship. Users publish documents by anonymously submitting server blocks to servers.
Blocks persist for a minimum of two weeks in the system, but must be refreshed by users to
persist indefinitely. Each server has a long-lived public key, used for authentication. Servers
can communicate with each other both directly and anonymously (using other servers as a mix
network [2]). Different servers may dedicate different amounts of storage to Tangler, but each
publicly certifies its capacity. There is a general consensus on the public keys and capacities of
available servers.

The list of servers is maintained using a standard group membership algorithm (e.g., [16]).
Convincing other nodes of a server’s corruption is straight-forward. Many forms of corruption
result in two contradictory messages digitally signed by the same server—a succinct proof of the
server’s misbehavior. The other main threat is that a bad server will refuse to answer requests
properly. When a server fails to answer, the requester can forward its request through any other
server, enlisting that server as a witness. Any participating server can validate the response to any
Tangler request. Thus, the witness will either detect misbehavior or return a valid response to the
requester. All Tangler operations are idempotent, so if a witness is faulty, the requester can safely
resend its request through a different witness.

Each server has the right to consume other servers’ storage in proportion to its own capacity.
This right is conferred by digitally signed storage credits, good for the storage of one block for
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two weeks from the date of the credit’s issue. Servers delegate the credits they receive to users
who wish to publish blocks. How a server apportions its credits is entirely at the discretion of
its operator. One server might introduce blocks in exchange for e-cash payments. Another might
charge hashcash [1]. Another might charge for publication in human time—posing challenges that
could not be answered by automatic “spamming” programs [13]. Alternatively, a server might only
accept blocks from particular pseudonyms, or from members of the organization sponsoring the
server. Whatever the policies of individual servers, however, no server can influence or limit how
other servers dedicate their space.

The Tangler network hides the identity of the server whose credit was used to introduce any
particular block. In fact, servers may not themselves know for which blocks their credits have
been used. To foil attempts to trace publication by traffic analysis, new storage credits all become
available at the same time, once per day.

6.1 Block-to-server mapping

The Tangler network uses consistent hashing [10] to map blocks to particular servers. The 160-bit
output of the SHA-1 hash function is mapped onto points of a circle. Each server block is assigned
the point on the circle corresponding to the SHA-1 hash value of its contents. Collection root
blocks are assigned the point on the circle corresponding to a hash of their public key. Each server
is also assigned a number of points on the circle proportional to its stated capacity—for example
one point per 100 MBytes of storage. A server’s points are calculated from its public key, K, and
the number d of days since January 1, 1970. Server A with N points and public key KA is assigned
the values:

SHA-1 (KA, bdN/14c) , SHA-1 (KA, bdN/14c − 1) ,

. . . SHA-1 (KA, bdN/14c − (N − 1))

Thus, each day roughly 1/14 of a server’s points change. After two weeks, a server has, with very
high probability, entirely new points on the circle.

Each block is stored on the servers immediately clockwise from it on the SHA-1 circle. Figure 3
gives a simplified example, using a 6-bit hash function. There are three servers in the example, A,
B, and C, each with four points on the circle. A block with hash 011001 is represented as a black
triangle. Going clockwise from the block’s position, we cross points belonging first to server A,
then to server C. Thus, if we are replicating blocks twice, the block will be stored on servers A
and C.

Since server public keys and the day number are well-known information, anyone can compute
the current set of points on the circle. To look up a block given its hash (or public key, for collection
roots), one must contact the server corresponding to that block’s successor on the circle, trying
subsequent points if the immediate successor is unavailable, misbehaving, or simply does not have
the block. Even if a server is misbehaving or if there are slight inconsistencies in the list of known
servers, the lookup algorithm will very likely locate a replica of the block in question.

Note that it is up to users to publish blocks on the servers where people will look for those
blocks. Tangler does not prevent users from publishing blocks elsewhere. However, since storage
credits are limited, it is in a user’s best interest to spend her credits wisely. As server points move
around the circle, users will need to republish server blocks. Since the duration of server points
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Figure 3: Use of consistent hashing to distribute server blocks amongst servers.

and storage credits is both two weeks, we expect that the maintainer of a stable collection would
reach a steady state of reinjecting 1/14 or 7% of her server blocks every day.

6.2 Block introduction protocol

The block introduction protocol has three phases. First, servers non-anonymously request storage
credits from each other on behalf of anonymous users wishing to publish blocks. Second, servers
issue storage certificates in exchange for blocks they receive when a storage credit is redeemed.
Finally, each server commits to the blocks it is serving by producing a hash tree of all its blocks
and signing the dated root of the tree. We describe each stage in more detail.

6.2.1 Storage credits

Every day, servers must accept 1/15 of their stated capacity in new blocks to store for two weeks.
The process begins when servers request storage credits from each other. Servers exchange credits
in proportion to their capacities. If server A has capacity cA, server B capacity cB, and the total
capacity of all non-probationary servers is C, then A and B will request cAcB/15C credits from
each other. New servers cannot request credits during their probationary period, but must grant
credits just the same.

Credits are nothing more than digital signatures of block hashes, blinded [3] so that servers
do not know for what blocks they are issuing credits. Specifically, each server A creates a daily
temporary public key KTA for signing storage credits. It certifies the key and the day, d, with its
long-lived public key KA, producing {CREDIT-KEY, d,KTA}K−1

A
. A server must certify exactly

one such temporary key per day and must never reuse keys; two CREDIT-KEY certificates from the
same server with the same d or KTA are grounds for expulsion from the system.

A credit consists of a CREDIT-KEY certificate and the signed hash of some block m, {SHA-1(m)}KT−1

A
.

Credits are produced using blind signatures, so that A does not see the contents of the blocks for

Because servers accumulate new blocks for the following day before deleting old blocks, a server may need to
store 15 days worth of blocks. Thus, the daily block intake of 1/15 capacity.
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which it is issuing credits. When servers request credits on behalf of users, the users themselves
blind the requests. Thus, even the server requesting a credit will likely not know what block that
credit is for.

All requests for credits are numbered, tagged with the day number, and signed by the requesting
server. Thus, a server can easily prove that another, bad server has requested too many credits by
producing either a signature with too high a number or two different signed requests with the same
day and number. If a bad server ever refuses a legitimate request for a credit, the requester forwards
the request through other servers which it uses as witnesses. If the server persists in refusing to
issue credits, it eventually gets ejected from the system. Note that there is no problem disclosing
credits to witnesses, because the credits are blinded. Moreover, witnesses can easily check whether
a credit corresponds to a particular blind request without needing to unblind the request.

At the end of the day, servers use remaining credits to republish some of their expiring blocks
on servers that will be responsible for the next days points in the SHA-1 circle.

6.2.2 Storage receipts

Once a user has obtained a storage credit—say from server A for block m—she must transfer
m’s contents to A. This is done by anonymous communication through other servers. If m has
not previously been published, the user sends its contents to A along with the block’s unblinded
storage credit. A, if honest, replies with a signed storage receipt, {RECEIPT, SHA-1(m), d}K−1

A
.

If A refuses to issue a storage receipt, the user anonymously enlists another server as a witness.
The witness presents A with m and the storage credit. If A still refuses to acknowledge receipt, the
witness forwards the request through other servers who either obtain a receipt from A or eventually
eject A from the system.

If m has already been published, then instead of forwarding its contents to A, the user forwards
the identity of another server, B, currently serving m. A must then either obtain m from B, return
to the user a storage commitment from B that does not include m (see below), or else initiate
the process of ejecting B from the system. In the case of a storage commitment excluding m, as
explained below, if B was supposed to have stored m, the user will have a succinct proof of B’s
misbehavior and can anonymously initiate its ejection from the system.

6.2.3 Storage commitment

At the end of the day, after the exchange of storage receipts, each server makes its newly received
blocks available and publishes a signed storage commitment. The commitment consists of the
current date and the root of a balanced hash tree. The leaves of this tree contain a sorted list of
hashes of every block the server is serving, followed by a sorted list of (public key, collection
version) pairs, and for each block of either type the number of days the block has to live (initially
14). A server must be able to produce its current signed commitment and any node of the hash tree
upon request, or else face ejection after the requester involves witnesses. A server must never sign
more than one storage commitment per day. Two distinct commitments signed by the same server
for the same day constitute grounds for expulsion.

Storage commitments prevent servers from discarding or suppressing blocks they have agreed
to publish. Once a server has committed to storing a block by signing the hash tree root, it must
produce that block on demand or face ejection after the requester involves witnesses. Every block
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lookup becomes a possible audit of a server’s behavior. A server that has published a block can
anonymously ask another server, the witness, to verify that a particular block is being stored on
server A. The publishing server sends the storage receipt, that server A had previously signed,
along with the verification request. This storage receipt proves that server A committed to hosting
the block. Therefore, if server A cannot produce the block being verified, it will face eventual
ejection from the system.

The hash trees in storage commitments play several other roles in Tangler. Users publishing
documents use the trees to select random blocks to entangle with. To retrieve a random block, a
user first selects a random server A, weighing the probabilities of the servers by their capacities.
The user knows A’s block capacity, cA, and so can simply pick a random n, 0 ≤ n < cA, and
walk the hash tree from A’s storage commitment root to find the hash of the nth block. (This is
easy, since the tree is balanced and all leaves store the same number of hashes.) The user can then
simply request block number n from A by its hash. Fetching random blocks in this way implicitly
audits servers’ behavior, as a server which loses some percentage of its blocks will very likely be
discovered. Of course, requests for random blocks are sent anonymously so that servers cannot
identify publishers by the blocks they have entangled with.

Servers also use the hash trees in commitments to fill their excess capacity. As discussed below,
in the event of an unavailable server that does not appear to be corrupt, the network will have more
storage than it issues credits. Though not enforced, good servers can fill any extra space with
blocks near their recently acquired points on the circle from servers about to relinquish nearby
points. Because the leaves of the commitment hash trees store blocks in sorted order, it is easy to
find blocks near a particular point on the circle. Filing extra capacity in this way also implicitly
audits other servers.

The public key list in a storage commitment can also be used to detect new collections. A
search engine could make use of this information to index Tangler collections.

6.3 Discussion and limitations

The Tangler protocol we propose provides anonymity for publishing while preventing flooding
attacks. Though blocks are dispersed untraceably across all servers, no server can consume more
than its fair share of storage. Because different servers employ different block admission policies, it
is unlikely that an attacker could simultaneously monopolize all servers’ available storage credits.
If an attacker did, servers could charge e-cash for storage credits and use the revenue to dedicate
more resources to the system. The Tangler protocol also implicitly audits servers’ behavior at many
stages, ensuring that bad servers can quickly be ejected. By disallowing servers from publishing
during their first month of operation, the protocol ensures that even bad servers do more good than
harm.

One of the limitations of the protocol is its synchrony requirements. Certain behavior should
obviously result in immediate expulsion from the system—for instance issuing two different stor-
age commitments on the same day. It is less obvious what to do with a server that becomes
unavailable for 24 hours, however. The basic protocol would eject such a server when it failed to
issue storage credits or produce a storage commitment. Other options include delaying updates
until the server returns (unscalable), or simply waiting for a few update cycles before ejecting the
server.
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If an unavailable server is not ejected before the system updates, there is a risk of revealing
which blocks that server’s credits have supported—those blocks will slowly disappear unless the
user publishes them through another server. If the unavailable server still counts towards the non-
probationary capacity of the system, servers will have more capacity than they issue storage credits
(since the unavailable server will not request its credits). Some blocks originally introduced by the
unavailable server may therefore be preserved by other servers filling their excess capacity. Other
blocks will be reintroduced by other users because of entanglement. Nonetheless, a gradually
increasing number of blocks will disappear.

Other possible attacks include attempting to use all of one server’s credits towards a small set of
other servers, so as to block a collection root that needs to be published on those servers. A corrupt
server might also reduce performance by acting correctly but deliberately slowly. The Tangler
network also needs to resist traditional denial of service attacks, such as a flood of block lookup
requests. Conventional defenses such as hashcash are adequate for many attacks, but anonymity
makes it harder to trace bad users.

7 Summary

We have described Tangler, a distributed document storage system with censorship-resistant prop-
erties. Tangler transforms published documents into fixed-size blocks in such a way that many
blocks actually belong to multiple documents. This technique, known as entanglement, diffuses
responsibility from particular servers for particular documents, makes replicating other people’s
documents an inherent part of publishing, and furthermore gives anyone a plausible excuse for
replicating any block in the system.

We also described the design of a self-policing storage network in which volunteers accept to
store and serve entangled blocks. The network gives servers discretion over what they publish,
but prevents any server from controlling what other servers publish. The protocol conceals the
relationship between blocks and the servers that introduce them, but blinded storage credits prevent
any server from consuming more space than it provides.

The Tangler network additionally leverages entanglements to make auditing of servers’ be-
havior an inherent part of publishing. Most forms of misbehavior result in a server’s immediate
expulsion. The worst a bad server can generally do is reduce the capacity of the system by what-
ever storage it is was contributing before the expulsion. Because new servers are blocked from
publishing during a probationary period, an ejected, malicious server that rejoins the system under
a new identity will only reverse the damage it has done by restoring the system’s lost capacity.
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